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Weyl formulas for annular ray-splitting billiards

Yves Deanin* and Antoine Folacdi
SPE, UMR CNRS 6134, Equipe Physique Semi-Classique (et) de ladvi@bdadense, Facultedes Sciences, Universitee Corse,
Boite Postale 52, 20250 Corte, France
(Received 20 May 2003; published 14 October 2003

We consider the distribution of eigenvalues for the wave equation in anfel&atromagnetic or acoustic
ray-splitting billiards. These systems are interesting in that the derivation of the associated smoothed spectral
counting function can be considered as a canonical problem. This is achieved by extending a formalism
developed by Berry and Howls for ordina¢without ray-splitting billiards [Berry and Howls, Proc. R. Soc.
London, Ser. A447, 527 (1994]. Our results are confirmed by numerical computations and permit us to infer
a set of rules useful in order to obtain Weyl formulas for more general ray-splitting billiards.
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[. INTRODUCTION ® solution of the wave equation and its normal derivative
dP/an satisfy the boundary conditions
Since the pioneering work of Weyll] dealing with the
distribution of eigenvalues for the wave equation in a cavity P! L
with a perfectly reflecting boundary, considerable effort has ®'=d" and —=a——. (1)
been devoted to the construction of the smooth part of spec- on on
tral counting functiongWeyl formulag in various fields of
physics and mathematics. For a historical point of view onThe casesr=1 anda=1/N? respectively correspond to the
this problem, we refer to the seminal paper of Katandto  TM and TE polarizations in electromagnetig@0]. On the
the monograph of Baltes and H{I8]. For its importance in outer circle, we shall assume thdt vanishes(Dirichlet
physics and for various applications, we refer to the monoboundary condition Such a condition is more artificial than
graphs of Baltes and Hi[f3] and of Brack and Bhaduf#]as  physical. It can be partially realized for the TM polarization
well as to references therein. if the billiard is embedded in a perfect conductor. We assume
In general, the determination of the smooth part of a speci in order to simplify our calculationgViutatis mutandiswe
tral counting function is a complicated task and only thecan also consider the case of a two-dimensional acoustic an-
leading order terms can be obtained. By contrast, for twonular billiard. In that case, region(tesp. region Il is occu-
and three-dimensional billiards with Dirichlet, Neumann, orpied by a perfect fluid with densitp' (resp.p') while «
Robin boundary conditions, this problem can be consideredp'/p" [20] and can take any positive value. Finally, in
as definitely solvedsee, e.g., Ref$5—9] or the monographs order to be able to analytically perform the calculations, we
cited above For ray-splitting billiards introduced in the con- shall assume that the two circles are concentric, but the final
text of acoustic and quantum chaos by Couchmeiaal. [10] results given by Eq$29)—(31) and(40) are equally valid for
and extensively studied in recent yeésse, e.g., Ref§11—  nonconcentric circles.
19)), it is rather natural to think that the same outcome could For such billiards, eigenvalues cannot be analytically ob-
be obtained. Recently, some progress has been made in thained. They satisfy a transcendental equation involving
direction[11,13,14,18% but it seems we are very far from a Bessel functions that can be solved only numerically. In spite
general theory. With this aim in view, it is interesting to solve of this, we are able to analytically derive the associated Weyl
canonical problems, i.e., to consider simple examples of rayformulas from the corresponding Green functions. This is
splitting billiard problems for which it is possible to perform done by using an approach developed by Berry and Howls
exactly the calculationgl7,19 or to carry them on as far as [8] and which generalizes a previous work by Stewartson
possiblg 16]. The results then obtained are useful in order toand Waechtef{7]. This approach has been considered by
infer Weyl formulas for more general ray-splitting billiards. these authors for the circular billiard with the Dirichlet con-
With this in mind, we are concerned, in this paper, withdition on its boundary. We extend it rather naturally to the
the distribution of eigenvalues for the scalar wave equationmore complicated case of annular ray-splitting billiards. We
in a two-dimensional dielectric annular billiard. This billiard are then confronted by some tedious algebraic calculations
consists of an outer circle with radid&and an inner circle which, fortunately, can be performed with the helpvafTh-
with radiusr. The index of refraction between the two circles EMATICA [21].
(region ) is fixed at 1 while the inner diskregion II) is Our paper is organized as follows. In Sec. II, we introduce
characterized by the index of refractibh At the interface  our notations and we construct the Green function for the
between the two regions, we shall assume that the scalar fiewhnular ray-splitting billiard as well as the associated regu-
larized resolvent. In Sec. lll, by extending the Berry-Howls
approach, we obtain a set of Weyl formulas corresponding to
*Electronic address: decanini@univ-corse.fr various values of the parametessand N. In Sec. IV, we
"Electronic address: folacci@univ-corse. fr briefly consider the same problem for the desymmetrized
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versions of the annular ray-splitting billiard. In Sec. V, we whereA, , are normalization constants. It should be noted
numerically check the previous results, and in Sec. VI, wethat the eigenvalues correspondingme:0 are twofold de-
conclude our paper by inferring a set of rules useful for congenerated because of the relatign,=k_, , which follows
structing Weyl formulas for more general ray-splitting bil- from the invariance of Eq6) under the changen— —m.

liards [see Eqs(41)—(48)]. The determination of the eigenvaluespermits us to con-
struct the spectral counting function associated with the an-
Il. GREEN FUNCTION FOR THE ANNULAR nular ray-splitting billiard. It is given by
RAY-SPLITTING BILLIARD AND REGULARIZED v o
RESOLVENT
NK)=2 O(k=k)= > 2 O(k—kpo), (8
From now on, we shall use the polar coordinate system ' m=—c n=1

(p,0) with its origin O at the common center of the two . i
circles which define the annular ray-splitting billiard. The Where® denotes the Heaviside function.
eigenvalues, for the wave equation in this billiard as well  Eguation(6) can be solved only numerically. As a conse-

as the associated eigenfunctiohs are determined by soly- dUence, the smooth part of the spectral counting function
ing the following proglem. 4 y N(K) cannot be obtained directly from E¢B). In order to

accomplish this, it is more convenient to generalize the
Berry-Howls approach[8] (see also Stewartson and
H,®;(x) =K2D;(x), X(p,0), 2) Waechtel{ 7]) by introducing the regularized resolvent

(i) k; and ®; satisfy the Helmholtz equation

r (2=«
where g(s)zf f [G"(x,x,5)— Gp(x,x,5)]pdpd 6
0Jo
—A, for r<p<R

H,= —(1IN?)A, for 0<p<r, @

R (27

+f f [G'(x,x,5) = Gg(X,X,S)]pdpdd, (9)
r Jo

with the Laplaciam, given, in the polar coordinate system,

by whereG, is the “free-space Green function” given by
#? 149 1 4 | 1
- 4+ 4= Gy(x,x",8)= —K(s|x—x’
+ e
(i) ®; satisfy the boundary conditions _ % 2 |m(sp<)Km(Sp>)eim(0— 0
m:—:x:
®l(p=R,0) =0, 5
i(p ) (53) (108
®j(p=r,0)=](p=r,0), (5b) N2
Gh(x,x",8)= =—Ko(Ns|x—x’
%(p_r,a)—aw(p_raa)! ( C) N2 + 0 . )
=5= 2 In(Nspo)Ky(Nsp- )™=,
for 0= 60<2mr. 27 M=
Because a solution of E@2) is expressible in terms of (10b)
Bessel function§2?2], it is easy to prove from Ed5) thatk;
are the values ok which solve while G is the annular ray-splitting billiard Green function
solution of
Jn(kR)  Jm(kr) J/(kr)
HOKR) HBkr)  H W(kr) (Hy+5%)G(x,x',5)= 8(x—x) (12)

(6)

0 Im(NKr)  Nady(Nkr) and subject to the boundary conditions

| ’ _ r_ ’
for me Z. For a givenm, they can be indexed by the integer ~ G (X.X',8)=0 for p or p’=R, 0<6,6'<2m,

n with n=1,2,3 ... and thecorresponding eigenfunctions (123
are given by G'(x,x",5)=G"(x,x’,s) for p or p'=r,
Jm(km I’]R)
) ,0)=A Jm(k - 0<6,0'<2m, (12b)
m,n(P ) m,n m( m,np) H(l)(km'nR)
L LU . -
XH(l)(km,np)>eim9, ) o (x,x",s)=«a p (x,x",s) for p or p'=r,
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—+ oo

0<6,0’'<2m. (120 A 2c k -1
N(k)= Ekz-i- 7lk+02—; 21 %sz—l-
Here, it should be noted that in order to constrg¢s), we "~ (H—E) k2"

need the Green functioB(x,x’,s) only for x andx’ lying in (14)
the same region of the billiard.
When |s| is large, g(s) has the asymptotic expansion Our theory does not provide the expression for the surface

(Weyl serie$ term A. We shall assume thatl is the billiard total area
weighted by the refraction index and given by
+ o0
c A=m(R?*—r?)+N?zr2. (15)
gj(s):pz1 S—E (13) (

In order to obtain the, coefficients, we must first solve
the problem defined by Eq§ll) and(12) and then perform
and from thec, coefficients we can obtain the large- the integrations in E(9). The solution of Eqs(11) and(12)
asymptotic behavior for the spectral counting function in thecan be constructed in terms of the modified Bessel functions

form [22] and is given by
1 = I n(SRDY(sr,N) [ K (SR
GI ) ’1 =5 Km > _—Im >
(xx'\S)=5_ 2 | (SRD(sr.N)— K (sRD@(sr. | %= T (sRy ' m(oP=)
M _ im(6—6")
>< D%)(Sr,N) |m(SP<) Km(SP<) e ’ (163)

2 t=

N
Gl(xx',8)=5— m; Im(Nsp-)

— o0

I m(SRIEm(sr,N) =K (sREX(sr,N)
I m(SRIDm(sr,N)—Kn(sRDW(sr,N)

Km(Nsp~)— Im(Nsp-) [€M@=¢) " (161

with p-=inf(p,p"), p~=sup(p,p’), and 2
f(s)=R? 1+2—R2 Im(SRKn(sR—1/(sRK/(sR
Do(stN) =K/ (511 m(NsH) — Nal (NSHK n(SP), °
(179 1 15(SRIDy(srN) = K7 (SRID(sT,N)
SR (SRDm(sr,N)—K(sRDH(sr,N) |’
DWM(sr,N)=1/(s")In(Nsr)—Nal] (Nsrl(sr), 20
(17b) (209
Em(sr,N)=K/ (sr)Kn(Nsr)—NaK/  (NsrK(sr), @ _2 L )
(170 f/(s)=-—r 1+SZrZ [m(SHKp(sr) —15L(snK/(sr)
EM(sr,N)=1/(snKn(Nsr)—NaK/ (Nsr)ly(sr). _Na  In(sRK(sn) —Kn(sR)Ify(sr)
(170 ST 1 ,(SRIDy(sr,N)—Kn(sSRD®(sr,N)
This provides the expression fg(s): m2\ 1
e X1 (NsH+| 1+ —— | —
1 2:2] Sr
gs)=-5 2 fuls), (18) ST
- I m(SRKp(sr) =K (sR) I x(sT)
where I (SRD(sF,N) —Kn(SRID®(s1,N)
fn(s)= () +12(s) +13)(s) (19
with X1m(Nsr) |, (20b)
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1+ I m(NsnK,(Nsr)

(3)/ ) — NI2p 2
fin (8)=N-r N2 2

1
_|r,n(NSI‘)KIfn(NSf)_ N_SI'

Im(SRIK{(s1) —Kn(SR)If(sr)
I m(SRIDm(sr,N)—Kn(sRDM(sr,N)

m2 )a
1+ ———

X1 (Nsr)+ —
m( ) N232r2 sr

| (SRIK (s —Ky(SR)I(sr)
I m(SRIDm(sr,N) =K (sRDW(sr,N)

X1 m(Nsr) |. (200
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aT (m2+ Z2)1/4
Ki(2)=— Efexr[ —Fm(2)/2]

& (—1)Pu [ty
3, ( )l,:fp[ (Z)]_ (220
Here
Fm(z)=2(m2+22)1’2+2mln le
(233
tm(2)= (2t )" (23b)

andu, andv, are polynomials given in chapter 9 of Ref.
[22] [Egs.(9.3.10 and(9.3.14]. It should be noted that, as
for the circle billiard [7,8], the Weyl coefficientsc, and

By using the Poisson summation formula as well as the regqrefore the smoothed spectral counting function come di-

lation f _,(s)=f(s), we can write

fm(S)€2™M dm.

g(s)=— >

pu=—o0

+
(21

0

It should be noted that Eq21), with f,(s) given by Egs.

(19) and (20), provides an exact expression @fs).

Ill. FROM THE REGULARIZED RESOLVENT
TO THE SMOOTHED SPECTRAL
COUNTING FUNCTION

The large}s| asymptotic behaviof13) of g(s) can now
be found from Eq(21) by replacing in Eqs(19) and(20) the
modified Bessel functions,,, |/,, K., and K/, by their
uniform asymptotic expansiorisee Eqs(9.7.9—(9.7.10 of
Ref.[22]] given by

11 < Ultn(2)]
Im(2)= ﬂ—(mzﬂz)lmequm(z)/Z]go e
(229
, o (mPA)t < pltn(2)]
|m<z>—WquFm(z>/2]go e
(22b

T 1
Kn(2)= \@mexq—w)/z]

+ oo

(—1D)Pupltm(2)]

2 e (220

rectly from thew =0 term in Eq.(21). As noted by Berry and
Howils [8] (see also Refd23,24)) the other terms are asso-
ciated with the fluctuating part of the spectral counting func-
tion which could be obtained by carefully taking into account
Stokes phenomenon for the asymptotic expansi@2s in
the context of hyperasymptoti¢25,26].

The u=0 term in Eq.(21) now reduces to

a(s): _f mf_m(s)dm, (24)
0
where
()= (8 + () +1(S) (25)
with
2 22 t* A(l) R
iy = IR 5 AR o
S p=1 mP
2(s)=+ W § ABZ)[tm(Sr),tm(Nsr)]’
S p=1 mP
(26b)
T8)(s)=— W § AgS)[tm(sr),tm(Nsr)].

S p=1 mP

(260

Here the functiondA(”, A, andAl®) can be expressed in
terms of the polynomialsi, andv, and therefore can be
explicitly obtained[see, below, Eq(28)]. Then, by using

Egs.(24)—(26), we find the general expression
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Cp= o zf A(”[le+x7]dx— U A(Z)[x/\/l+x XINZF+ X2 dx
+oo N2+ X2
—f —pAg@[x/¢1+x2,x/¢N2+x2]dx]. (27)
0 X

In order to provide the terms ik and k® in the expression of the smoothed spectral counting function, we need the
coefficientsc; andc,. They can be obtained, by performing the integrations in the previous equation, from the fumﬁi)qns
AL AP AR AP andA® | which are explicitly given by

X
A1+ X2 ]=— —————, 28
il ] P10 (283
4
(1) xI1+x3]= ———— 28b)
[ | 2(1+x3)%’ (
X
AP x/\1+x2 xIINZ+x?] = —~ , 280
I v | 2(1+x2)32  (1+x))[V1+x2+ ayNZ+x7] (289
1— a)N?+(1— aN?)?x%+ (a—1)(2a+ 1)N>X*+ (a?— 1)x8]x?
A(ZZ)[x/\/1+x2,x/\/N2+x2]=[( N+ ) (e 1) ) ( ] , (280
2(N?2+x%)(1+x2)3[V1+ X2+ aN?+x?]?
N2x aN?x
AP x/ 14 %2 x/ N+ X2 = — + , (28¢
D ! I N (ALt a N ]
a(a—1)N®+(1— aN?)°N2+ (1— a)(a+2)N>x*+ (1— a?)N?x8]x?
A(23)[x/\/1+x2,x/\/N2+x2]=[ (@ DN+ ) (1~ a)la+2) ( N (28f)
2(1+x?)(N2+x2) %[ 1+ X2+ aN?+x%]?
[
For the TM polarization ¢=1), we then find _ k’(R®-r?) N%k’r? kR
N(k)= + -
4 4 2
Tk k3 (R®2-r?) N2k*r? kR 2 4
W=7+ 7 2 + = —K(A-N2)+ = ——
T 1+ N2 T 1+N
+2E(1 N?) lk+1+ if N<1 N 1
— — —_— r —_ PO | ,
™ 2 2 6 XTI 1-N*Z1-N2| — = — = [kr
2 2 2
(299
1 .
+gto ifFN<L (309
— k’(R2-r?) N2%k’r? kR
MK)=——f—— TR NACE KR [2 N (NP1
A e A
2N _[N°-1} N 1 1
B 2 M e 2 1 H(N“—l 7 N2-1
P 2 4 ' 2
it N>1. (29h) NE+NTD A N N
N 1 1 _
_E_E kr +g+ <. if N>1. (30b)
For the TE polarization¢=1/N?), we then obtain
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Finally, in the general casex(* 1), we obtain Ik nR)
.01 A ) S |
T (RP=r)  NKr? kR [2 a(1-N?) (km,nR)
(= 4 4 2 7 a1 X cogmé) (32)
o0 2 a®N*-1 (a1 7 5 with me N, while in the second set, we consider the odd
XK(1-N H} a(a®—1) o? 'E'l_N eigenfunctions[odd in the changex(p,8)— ox(p,— 0)]
given by
N 1k+1+ if N<1 (319
———zlkr+=z+--- if N<
2 2 6 ’ - - Im(Km nR)
- " d(Ap,0)=AL) Jm(km,np)—mH(l)(km,nP)
_ k“?(R°—=r°) N<k°r° kR .
= - Xsin(m@ 33
N(K) 1 +— 5 n(me) (33
2 a(1-N?) [N2-1) 2 a(a®N?-1) with me N*. Here and in the following, the superscrijjts)
+ = += and (—) refer respectively to positive and negative parities
7 N(a?—1) N? T N(a®—1) and theA}) and theA(;) are normalization constants. The
) spectral counting function&”(*) (k) and N(~)(k) associated
_ 27 N“°—1 E_ } with these two sets are then given by
XII{ 1—a“,—=, kr
2" N2 2 2
40 H4oo
1 . (F(k)= k—k 4
+gto i N>L (31b) AT m§=:0 n§=:l®( mn) (343
+ oo + o0

In order to perform the integrations leading to E¢@9)— (=)

(31), it has been necessary to separate the particular«ase N (k)_mzzl nzl O (k=kmn). (34b)
=1 (TM polarizatior) from the general one# 1. It should

be noted that the case=1/N? (TE polarization is included . L=
in the general case+ 1 and ca(n beprecoverec? from EGD). _:I')he smoothgd spectral .countm.g Eli?ct|ah@(+)(|§{)and
Moreover, it is important to keep in mind that as far as the/\! (k) respectively associated with"*)(k) and V) (k)
elliptic integralsE, K, andIl are concerned, we adhere to the can now be obtained by usingutatis mutandisthe theoret-

definitions and conventions of R4R2] which are in agree- ical framework developed in the two preceding sections:

ment with those oMathematicd 21] but differ from those of M ™)(k) can be constructed from the even pairt)(s) of the

Ref. [27]. regularized resolverg(s) given by Eq.(9) while N'(7)(k)
The various terms appearing in E489)—(31) have their  can be constructed from its odd paft(s). The functions

usual physical interpretations: The first and the second termg(+)(s) andg(~)(s) are given by

(in k?) yield the area contributions, the third and the fourth

ones(in k) yield the perimeter contributions, while the fifth 1(r rom

term (in k%) yields the curvature contributions. In particular, gF)(s)= EJ J [G"(x,x,5)+G"(x,0%,S)
it should be noted that the fourth term, in all these equations, 0Jo

provides the perimeter correction associated with the circular _ Gg(x,x,s)]pdpda

ray-splitting boundary ap=r and that it is this term which

contains the elliptic integrals. Moreover, it seems to us nec- 1(R(2m |
essary to point out that the fifth term is associated with the + EJr Jo [G(X,x,8)*G(X,0%,S)
curvature of the circular Dirichlet boundary @t R. In other
words, and this is rather surprising, the ray-splitting bound- —Gp(x,X,5)|pdpd 6 (35
ary atp=r does not provide any correction to the curvature
contributions. and they satisfy

IV. THE DESYMMETRIZED ANNULAR g(s)=gM(s)+g7)(s). (36)

RAY-SPLITTING BILLIARD

In Sec. Il, we pointed out the twofold degeneracy of theBy performing the integrations in E{35), we obtain

eigenvalues, , with m#0. It is possible to work with the 1
nondegenerated spectra by separating the eigenfunctions of () ey — — & ycor
fplaetert St : g'’(s)=59(s) =g~ (s) (37)
the annular ray-splitting billiard in two different sets: In the 2
first set, we consider the even eigenfunctigesen in the
changex(p, 0) — ox(p,— 0)] given by with
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N2r?

1
g*(s)=——fo(s)+ 7

4

[1o(Nsr)Ky(Nsr)

2
—14(NsK4(Nsn ]+ RZ[IO(SR)KO(SR)

r2
—14(sRK4(sR - Z[Io(sr)Ko(sr)

—l4(snKg(sn] (38)

and, by using the asymptotic expansions given by Egs.
(9.7.)—(9.7.6 of Ref.[22], we can write

o (N=Dr+rR 1 o 1 29
9N = g g Q== G- (39
We then immediately obtain
J\_/(t) o 1./\_[k +(N—1)T+Rk_1 4o a 20 40 612 g0 100 120
()_E ()_T gt (40)

FIG. 1. The fluctuating part of the spectral counting function for

with (k) which is given by any of Eqe29)—(31), accord- e TM and TE theoriesr(R=2/10 andN=3/4).

ing to the physical problem considered.
Now, we would like to provide a physical interpretation of
the results obtained above. We first note that the twofold We have checked Eq$29)—(31) and (40) for various

degeneracy of the eigenvaluég, , with m#0 is directly  configurations corresponding to different values of the pa-
linked to the invariance of the annular billiard under theyametersr/R, N, and « by considering the oscillations

continuous grouf(2) (i.e., under rotations about the com- around zero of the functioﬂﬁ(k)z/\/(k)—/\_/(k) which is

mon center of the two circles defining the billigreind is the fluctuating part of the spectral counting function. All
mathematically explained by the following result: The func-yheqe numerical checks confirm the Weyl formulas obtained
tions exp¢-imé), with me N* fixed, form a basis for a two- i, secs. 111 and IV.

dimensional r.epresentation 0f(2). Inorder to suppress that In Figs. 1 and 2, we present some results for the TM and
degeneracy, it is necessary to break the symmetry under thg: theqries which have been obtained foR=2/10 and for
continuous groupo(2). This can be done by folding the N _3/4 andN=3. We have computed all the eigenvalues

annular billiard along its diameter lying on tl@&x axis. On K., Up to the frequenc, =120 by solving Eq(6). For
that diameter, we can assume that the scalar lekhtisfies 23 e corresponding number of eigenvalues is around

either thg Dirichlet or the Neumann boundary condit.ion. We4700 while forN=3/4 it is around 3500.

then define two different half-annular billiards which are

both desymmetrized versions of the annular ray-splitting bil-

liard. By assuming that the modes which solve the problem VI. CONCLUSION AND PERSPECTIVES
defined by Eqs(2)—(5) satisfy also the Neumantihe Di-
richlet) boundary condition on the diameter, we recover theC

even eigenfunction$32) [respectively the odd eigenfunc- mitting us to construct Weyl formulas for general ray-

tions (.33)] as weII' as the associated eigenvalue SpECtruméplitting billiards. The associated Weyl formulas providing
Equation(40) provides the Weyl formulas corresponding {0 e gmogthed spectral counting functions are given in the
these half-annular ray-splitting billiards. The factor 1/2 in usual form, i.e., by

front of the first term of Eq(40) as well as the second and
third terms are corrections which take into account the fold-

ing of the annular billiard and the boundary conditions on the NK)~ ik2+£k+c, (42)
fold. It is interesting to notdi) the perimeter contribution A A

given by = (Nr/27)k that corresponds to the inner half-

circle diameter, which bounds the region of indsxby a  but now the area termd, the perimeter ternf as well as the
Neumann or a Dirichlet boundarij) the term=1/8 which  constant ternC must take into account the ray-splitting phe-
originates from the two corners at the ends of the outer halfnomenon.

circle diameter, andii) the fact that the ray-splitting corners (i) A is the billiard total area weighted by the refraction
at the ends of the inner half-circle diameter do not providendex. For example, a piece of billiard of araand index of
any corrections. refractionN provides a contribution tod given by

V. NUMERICAL CHECKS

(a8) From our previous results obtained in the particular
ase of annular ray-splitting billiards, we can infer rules per-
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4 N N21)+4 1
T 1+ N? N? T N(1+N?)

N*—1 7 N2-1

X
I N4 2! N2

—-N-1

¢ if N>1, (46b

for the TE polarization, and by

a 20 40 &0 0 o0 120 4 a(1-N?) 4 a?N2-1
——————K(1-N¥)+— ————
10 T a?—1 T a(a?—1)
~ 5 1 21
i o aw 2 .
< “ ' X 11 > ,5,1—N —N-—-1|¢ if N<1,
|2 0 bl A Tl (haA il , UK a
< ] (479
N>1
“NTE 4 a(l—NZ)K N2—1 . 4 a(a®N%2—-1)
0 20 a0 60 80 100 1lzo ;N(a271) N2 T N(a?—1)
k , ™ N?—1 _
FIG. 2. The fluctuating part of the spectral counting function for X1 1-a N N2 —N=1]€ if N>1,

the TM and TE theoriesr(R=2/10 andN=3).
(47b
N?a. (42
in the general casen(#1).

(i) £ is a sum of terms associated with the boundaries on (iii) The constant ternd takes into account curvature and
orner contributions. As far as the former is concerned, it is

which discontinuities in the physical properties occur. Theciven b
contribution of a boundary of length which separates a 9 y
region of indexN from a forbidden region is given by

—N¢ (43 127 JrR(s)

if we assume Dirichlet condition on that boundary and by for & boundary curvé’ which separates a region of indék
from a forbidden regionR(s) denoting the local radius of

curvature alond’. Whenl' is a ray-splitting boundary which
N¢ (44) . : . .

separates a region of indék from a region of index 1 the
associated curvature contribution vanishes. As far as corner
contributions are concerned, we simply note that ray-
splitting corners with angler/2 provide a vanishing contri-
bution.

We are just beginning to check the previous formulas for

if we assume Neumann condition. The contribution of a
boundary of lengthld which separates a region of indék
from a region of index 1 is given by

4 5 ) the various desymmetrized versions of ray-splitting Sinai bil-
;E(lfN )-N-11¢ if N<1, (453 liards. We obtain a very good agreement between the theo-
retical formulas and the numerical data. This reinforces our

opinion that they are exact. It would be very interesting to
4N _[N*-1 “N-1le i N>1 45p  Prove them rigorously but we are unable to do so. We have

= N2 : ’ (45D also tried to link the formulas found for the TM polarization

(a=1) to the results that Kohler and Bhel [16] have ob-
tained for the scaled states of quantum ray-splitting billiards.
We believe that such a link must exist but, unfortunately, we
have not established it.

{4 N? 4 N* (b) In this paper, we have been exclusively concerned

for the TM polarization, by

711 N2 K(1- N2)+; 1iN? with the smooth part of the spectral counting functigtk)
for annular ray-splitting billiards. It seems to us possible to
treat also the construction of the oscillating pari\dk) as a

¢ if N<1, (46  canonical problem. By carefully taking into account Stokes
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phenomenon in the context of hyperasymptofi§,26], it  cavity strongly depend on the density of states of the elec-
might be possible to extract frog(s) all the periodic orbit tromagnetic field. Because of that, Weyl formulas for cavities

contributions, even though the algebraic calculations incontaining dielectric structures would be certainly welcome.
volved are certainly enormous.

(c) Finally, it would be very interesting to extend our cal-
culations to the three-dimensional case, having in mind ap-
plications to the domain of quantum optics and more particu-
larly to cavity quantum electrodynamics. Indeed, as is well We would like to thank Bruce Jensen for discussions con-
known, the optical propertiespontaneous emission, stimu- cerning the article of Ka¢2] 10 years ago as well as for
lated emission, etg.of atoms and molecules embedded in amore recent comments on the present work.
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