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Weyl formulas for annular ray-splitting billiards
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We consider the distribution of eigenvalues for the wave equation in annular~electromagnetic or acoustic!
ray-splitting billiards. These systems are interesting in that the derivation of the associated smoothed spectral
counting function can be considered as a canonical problem. This is achieved by extending a formalism
developed by Berry and Howls for ordinary~without ray-splitting! billiards @Berry and Howls, Proc. R. Soc.
London, Ser. A447, 527 ~1994!#. Our results are confirmed by numerical computations and permit us to infer
a set of rules useful in order to obtain Weyl formulas for more general ray-splitting billiards.
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I. INTRODUCTION

Since the pioneering work of Weyl@1# dealing with the
distribution of eigenvalues for the wave equation in a cav
with a perfectly reflecting boundary, considerable effort h
been devoted to the construction of the smooth part of sp
tral counting functions~Weyl formulas! in various fields of
physics and mathematics. For a historical point of view
this problem, we refer to the seminal paper of Kac@2# and to
the monograph of Baltes and Hilf@3#. For its importance in
physics and for various applications, we refer to the mo
graphs of Baltes and Hilf@3# and of Brack and Bhaduri@4# as
well as to references therein.

In general, the determination of the smooth part of a sp
tral counting function is a complicated task and only t
leading order terms can be obtained. By contrast, for tw
and three-dimensional billiards with Dirichlet, Neumann,
Robin boundary conditions, this problem can be conside
as definitely solved~see, e.g., Refs.@5–9# or the monographs
cited above!. For ray-splitting billiards introduced in the con
text of acoustic and quantum chaos by Couchmanet al. @10#
and extensively studied in recent years~see, e.g., Refs.@11–
19#!, it is rather natural to think that the same outcome co
be obtained. Recently, some progress has been made in
direction @11,13,14,16# but it seems we are very far from
general theory. With this aim in view, it is interesting to sol
canonical problems, i.e., to consider simple examples of
splitting billiard problems for which it is possible to perform
exactly the calculations@17,19# or to carry them on as far a
possible@16#. The results then obtained are useful in order
infer Weyl formulas for more general ray-splitting billiards

With this in mind, we are concerned, in this paper, w
the distribution of eigenvalues for the scalar wave equa
in a two-dimensional dielectric annular billiard. This billiar
consists of an outer circle with radiusR and an inner circle
with radiusr. The index of refraction between the two circle
~region I! is fixed at 1 while the inner disk~region II! is
characterized by the index of refractionN. At the interface
between the two regions, we shall assume that the scalar
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F solution of the wave equation and its normal derivati
]F/]n satisfy the boundary conditions

F I5F II and
]F I

]n
5a

]F II

]n
. ~1!

The casesa51 anda51/N2 respectively correspond to th
TM and TE polarizations in electromagnetism@20#. On the
outer circle, we shall assume thatF vanishes~Dirichlet
boundary condition!. Such a condition is more artificial tha
physical. It can be partially realized for the TM polarizatio
if the billiard is embedded in a perfect conductor. We assu
it in order to simplify our calculations.Mutatis mutandis, we
can also consider the case of a two-dimensional acoustic
nular billiard. In that case, region I~resp. region II! is occu-
pied by a perfect fluid with densityr I ~resp.r II) while a
5r I/r II @20# and can take any positive value. Finally,
order to be able to analytically perform the calculations,
shall assume that the two circles are concentric, but the fi
results given by Eqs.~29!–~31! and~40! are equally valid for
nonconcentric circles.

For such billiards, eigenvalues cannot be analytically o
tained. They satisfy a transcendental equation involv
Bessel functions that can be solved only numerically. In sp
of this, we are able to analytically derive the associated W
formulas from the corresponding Green functions. This
done by using an approach developed by Berry and Ho
@8# and which generalizes a previous work by Stewarts
and Waechter@7#. This approach has been considered
these authors for the circular billiard with the Dirichlet co
dition on its boundary. We extend it rather naturally to t
more complicated case of annular ray-splitting billiards. W
are then confronted by some tedious algebraic calculat
which, fortunately, can be performed with the help ofMATH-

EMATICA @21#.
Our paper is organized as follows. In Sec. II, we introdu

our notations and we construct the Green function for
annular ray-splitting billiard as well as the associated re
larized resolvent. In Sec. III, by extending the Berry-How
approach, we obtain a set of Weyl formulas corresponding
various values of the parametersa and N. In Sec. IV, we
briefly consider the same problem for the desymmetriz
©2003 The American Physical Society04-1
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versions of the annular ray-splitting billiard. In Sec. V, w
numerically check the previous results, and in Sec. VI,
conclude our paper by inferring a set of rules useful for c
structing Weyl formulas for more general ray-splitting b
liards @see Eqs.~41!–~48!#.

II. GREEN FUNCTION FOR THE ANNULAR
RAY-SPLITTING BILLIARD AND REGULARIZED

RESOLVENT

From now on, we shall use the polar coordinate syst
(r,u) with its origin O at the common center of the tw
circles which define the annular ray-splitting billiard. Th
eigenvalueski for the wave equation in this billiard as we
as the associated eigenfunctionsF i are determined by solv
ing the following problem.

~i! ki andF i satisfy the Helmholtz equation

ĤxF i~x!5ki
2F i~x!, x~r,u!, ~2!

where

Ĥx5H 2Dx for r ,r,R

2~1/N2!Dx for 0,r,r ,
~3!

with the LaplacianDx given, in the polar coordinate system
by

Dx5
]2

]r2
1

1

r

]

]r
1

1

r2

]2

]u2
. ~4!

~ii ! F i satisfy the boundary conditions

F i
I~r5R,u!50, ~5a!

F i
I~r5r ,u!5F i

II~r5r ,u!, ~5b!

]F i
I

]r
~r5r ,u!5a

]F i
II

]r
~r5r ,u!, ~5c!

for 0<u,2p.
Because a solution of Eq.~2! is expressible in terms o

Bessel functions@22#, it is easy to prove from Eq.~5! thatki
are the values ofk which solve

U Jm~kR! Jm~kr ! Jm8 ~kr !

Hm
(1)~kR! Hm

(1)~kr ! H8m
(1)~kr !

0 Jm~Nkr! NaJm8 ~Nkr!
U50 ~6!

for mPZ. For a givenm, they can be indexed by the integ
n with n51,2,3, . . . and thecorresponding eigenfunction
are given by

Fm,n~r,u!5Am,nS Jm~km,nr!2
Jm~km,nR!

H (1)~km,nR!

3H (1)~km,nr!D eimu, ~7!
04620
e
-

m

whereAm,n are normalization constants. It should be not
that the eigenvalues corresponding tomÞ0 are twofold de-
generated because of the relationkm,n5k2m,n which follows
from the invariance of Eq.~6! under the changem→2m.

The determination of the eigenvalueski permits us to con-
struct the spectral counting function associated with the
nular ray-splitting billiard. It is given by

N~k!5(
i

Q~k2ki !5 (
m52`

1`

(
n51

1`

Q~k2km,n!, ~8!

whereQ denotes the Heaviside function.
Equation~6! can be solved only numerically. As a cons

quence, the smooth part of the spectral counting funct
N(k) cannot be obtained directly from Eq.~8!. In order to
accomplish this, it is more convenient to generalize
Berry-Howls approach @8# ~see also Stewartson an
Waechter@7#! by introducing the regularized resolvent

g~s!5E
0

r E
0

2p

@GII~x,x,s!2G0
II~x,x,s!#rdrdu

1E
r

RE
0

2p

@GI~x,x,s!2G0
I ~x,x,s!#rdrdu, ~9!

whereG0 is the ‘‘free-space Green function’’ given by

G0
I ~x,x8,s!5

1

2p
K0~sux2x8u!

5
1

2p (
m52`

1`

I m~sr,!Km~sr.!eim(u2u8),

~10a!

G0
II~x,x8,s!5

N2

2p
K0~Nsux2x8u!

5
N2

2p (
m52`

1`

I m~Nsr,!Km~Nsr.!eim(u2u8),

~10b!

while G is the annular ray-splitting billiard Green functio
solution of

~Ĥx1s2!G~x,x8,s!5d~x2x8! ~11!

and subject to the boundary conditions

GI~x,x8,s!50 for r or r85R, 0<u,u8,2p,

~12a!

GI~x,x8,s!5GII~x,x8,s! for r or r85r ,

0<u,u8,2p, ~12b!

]GI

]r
~x,x8,s!5a

]GII

]r
~x,x8,s! for r or r85r ,
4-2
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0<u,u8,2p. ~12c!

Here, it should be noted that in order to constructg(s), we
need the Green functionG(x,x8,s) only for x andx8 lying in
the same region of the billiard.

When usu is large, g(s) has the asymptotic expansio
~Weyl series!

g~s!5 (
p51

1`
cp

sp
~13!

and from the cp coefficients we can obtain the large-k
asymptotic behavior for the spectral counting function in
form
04620
e

N~k!5
A
4p

k21
2c1

p
k1c22

k

p (
n51

1`
~21!n

S n2
1

2D k2n

c2n11 .

~14!

Our theory does not provide the expression for the surf
term A. We shall assume thatA is the billiard total area
weighted by the refraction index and given by

A5p~R22r 2!1N2pr 2. ~15!

In order to obtain thecp coefficients, we must first solve
the problem defined by Eqs.~11! and~12! and then perform
the integrations in Eq.~9!. The solution of Eqs.~11! and~12!
can be constructed in terms of the modified Bessel functi
@22# and is given by
GI~x,x8,s!5
1

2p (
m52`

1` I m~sR!Dm
(1)~sr,N!

I m~sR!Dm~sr,N!2Km~sR!Dm
(1)~sr,N!

FKm~sr.!2
Km~sR!

I m~sR!
I m~sr.!G

3F Dm~sr,N!

Dm
(1)~sr,N!

I m~sr,!2Km~sr,!Geim(u2u8), ~16a!

GII~x,x8,s!5
N2

2p (
m52`

1`

I m~Nsr,!FKm~Nsr.!2
I m~sR!Em~sr,N!2Km~sR!Em

(1)~sr,N!

I m~sR!Dm~sr,N!2Km~sR!Dm
(1)~sr,N!

I m~Nsr.!Geim(u2u8), ~16b!
with r,5 inf(r,r8), r.5sup(r,r8), and

Dm~sr,N!5Km8 ~sr!I m~Nsr!2NaI m8 ~Nsr!Km~sr!,

~17a!

Dm
(1)~sr,N!5I m8 ~sr!I m~Nsr!2NaI m8 ~Nsr!I m~sr!,

~17b!

Em~sr,N!5Km8 ~sr!Km~Nsr!2NaKm8 ~Nsr!Km~sr!,

~17c!

Em
(1)~sr,N!5I m8 ~sr!Km~Nsr!2NaKm8 ~Nsr!I m~sr!.

~17d!

This provides the expression forg(s):

g~s!52
1

2 (
m52`

1`

f m~s!, ~18!

where

f m~s!5 f m
(1)~s!1 f m

(2)~s!1 f m
(3)~s! ~19!

with
f m
(1)~s!5R2F S 11

m2

s2R2D I m~sR!Km~sR!2I m8 ~sR!Km8 ~sR!

2
1

sR

I m8 ~sR!Dm~sr,N!2Km8 ~sR!Dm
(1)~sr,N!

I m~sR!Dm~sr,N!2Km~sR!Dm
(1)~sr,N!

G ,

~20a!

f m
(2)~s!52r 2F S 11

m2

s2r 2D I m~sr!Km~sr!2I m8 ~sr!Km8 ~sr!

2
Na

sr

I m~sR!Km8 ~sr!2Km~sR!I m8 ~sr!

I m~sR!Dm~sr,N!2Km~sR!Dm
(1)~sr,N!

3I m8 ~Nsr!1S 11
m2

s2r 2D 1

sr

3
I m~sR!Km~sr!2Km~sR!I m~sr!

I m~sR!Dm~sr,N!2Km~sR!Dm
(1)~sr,N!

3I m~Nsr!G , ~20b!
4-3
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f m
(3)~s!5N2r 2F S 11

m2

N2s2r 2D I m~Nsr!Km~Nsr!

2I m8 ~Nsr!Km8 ~Nsr!2
1

Nsr

3
I m~sR!Km8 ~sr!2Km~sR!I m8 ~sr!

I m~sR!Dm~sr,N!2Km~sR!Dm
(1)~sr,N!

3I m8 ~Nsr!1S 11
m2

N2s2r 2D a

sr

3
I m~sR!Km~sr!2Km~sR!I m~sr!

I m~sR!Dm~sr,N!2Km~sR!Dm
(1)~sr,N!

3I m~Nsr!G . ~20c!

By using the Poisson summation formula as well as the
lation f 2m(s)5 f m(s), we can write

g~s!52 (
m52`

1` E
0

1`

f m~s!ei2pmm dm. ~21!

It should be noted that Eq.~21!, with f m(s) given by Eqs.
~19! and ~20!, provides an exact expression forg(s).

III. FROM THE REGULARIZED RESOLVENT
TO THE SMOOTHED SPECTRAL

COUNTING FUNCTION

The large-usu asymptotic behavior~13! of g(s) can now
be found from Eq.~21! by replacing in Eqs.~19! and~20! the
modified Bessel functionsI m , I m8 , Km , and Km8 by their
uniform asymptotic expansions@see Eqs.~9.7.8!–~9.7.10! of
Ref. @22## given by

I m~z!5
1

A2p

1

~m21z2!1/4
exp@Fm~z!/2# (

p50

1`
up@ tm~z!#

mp
,

~22a!

I m8 ~z!5
~m21z2!1/4

zA2p
exp@Fm~z!/2# (

p50

1`
vp@ tm~z!#

mp
,

~22b!

Km~z!5Ap

2

1

~m21z2!1/4
exp@2Fm~z!/2#

3 (
p50

1`
~21!pup@ tm~z!#

mp
, ~22c!
04620
-

Km8 ~z!52Ap

2

~m21z2!1/4

z
exp@2Fm~z!/2#

3 (
p50

1`
~21!pvp@ tm~z!#

mp
. ~22d!

Here

Fm~z!52~m21z2!1/212m lnF z

m1~m21z2!1/2G ,

~23a!

tm~z!5
m

~m21z2!1/2
, ~23b!

and up and vp are polynomials given in chapter 9 of Re
@22# @Eqs.~9.3.10! and ~9.3.14!#. It should be noted that, a
for the circle billiard @7,8#, the Weyl coefficientscp and
therefore the smoothed spectral counting function come
rectly from them50 term in Eq.~21!. As noted by Berry and
Howls @8# ~see also Refs.@23,24#! the other terms are asso
ciated with the fluctuating part of the spectral counting fun
tion which could be obtained by carefully taking into accou
Stokes phenomenon for the asymptotic expansions~22! in
the context of hyperasymptotics@25,26#.

The m50 term in Eq.~21! now reduces to

ḡ~s!52E
0

1`

f̄ m~s!dm, ~24!

where

f̄ m~s!5 f̄ m
(1)~s!1 f̄ m

(2)~s!1 f̄ m
(3)~s! ~25!

with

f̄ m
(1)~s!52

Am21s2R2

s2 (
p51

1` Ap
(1)@ tm~sR!#

mp
, ~26a!

f̄ m
(2)~s!51

Am21s2r 2

s2 (
p51

1` Ap
(2)@ tm~sr!,tm~Nsr!#

mp
,

~26b!

f̄ m
(3)~s!52

Am21N2s2r 2

s2 (
p51

1` Ap
(3)@ tm~sr!,tm~Nsr!#

mp
.

~26c!

Here the functionsAp
(1) , Ap

(2) , andAp
(3) can be expressed in

terms of the polynomialsup and vp and therefore can be
explicitly obtained@see, below, Eq.~28!#. Then, by using
Eqs.~24!–~26!, we find the general expression
4-4
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cp5
1

Rp22E0

1`A11x2

xp
Ap

(1)@x/A11x2#dx2
1

r p22 F E0

1`A11x2

xp
Ap

(2)@x/A11x2,x/AN21x2#dx

2E
0

1` AN21x2

xp
Ap

(3)@x/A11x2,x/AN21x2#dxG . ~27!

In order to provide the terms ink and k0 in the expression of the smoothed spectral counting function, we need
coefficientsc1 andc2. They can be obtained, by performing the integrations in the previous equation, from the functionsA1

(1) ,
A2

(1) , A1
(2) , A2

(2) , A1
(3) , andA2

(3) , which are explicitly given by

A1
(1)@x/A11x2#52

x

2~11x2!3/2
, ~28a!

A2
(1)@x/A11x2#5

x4

2~11x2!3
, ~28b!

A1
(2)@x/A11x2,x/AN21x2#5

x

2~11x2!3/2
2

x

~11x2!@A11x21aAN21x2#
, ~28c!

A2
(2)@x/A11x2,x/AN21x2#5

@~12a!N21~12aN2!2x21~a21!~2a11!N2x41~a221!x6#x2

2~N21x2!~11x2!3@A11x21aAN21x2#2
, ~28d!

A1
(3)@x/A11x2,x/AN21x2#52

N2x

2~N21x2!3/2
1

aN2x

~N21x2!@A11x21aAN21x2#
, ~28e!

A2
(3)@x/A11x2,x/AN21x2#5

@a~a21!N61~12aN2!2N2x21~12a!~a12!N2x41~12a2!N2x6#x2

2~11x2!~N21x2!3@A11x21aAN21x2#2
. ~28f!
For the TM polarization (a51), we then find

N̄~k!5
k2~R22r 2!

4
1

N2k2r 2

4
2

kR

2

1F 2

p
E~12N2!2

N

2
2

1

2Gkr1
1

6
1••• if N,1,

~29a!

N̄~k!5
k2~R22r 2!

4
1

N2k2r 2

4
2

kR

2

1F2N

p
ES N221

N2 D 2
N

2
2

1

2Gkr1
1

6
1•••

if N.1. ~29b!

For the TE polarization (a51/N2), we then obtain
04620
N̄~k!5
k2~R22r 2!

4
1

N2k2r 2

4
2

kR

2

1F 2

p

N2

11N2
K~12N2!1

2

p

N4

11N2

3PS 12N4,
p

2
,12N2D2

N

2
2

1

2Gkr

1
1

6
1••• if N,1, ~30a!

N̄~k!5
k2~R22r 2!

4
1

N2k2r 2

4
2

kR

2
1F 2

p

N

11N2
KS N221

N2 D
1

2

p

1

N~11N2!
PS N421

N4
,
p

2
,
N221

N2 D
2

N

2
2

1

2G kr 1
1

6
1 ••• if N.1. ~30b!
4-5
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Finally, in the general case (aÞ1), we obtain

N̄~k!5
k2~R22r 2!

4
1

N2k2r 2

4
2

kR

2
1F 2

p

a~12N2!

a221

3K~12N2!1
2

p

a2N221

a~a221!
PS a221

a2
,
p

2
,12N2D

2
N

2
2

1

2Gkr1
1

6
1••• if N,1, ~31a!

N̄~k!5
k2~R22r 2!

4
1

N2k2r 2

4
2

kR

2

1F 2

p

a~12N2!

N~a221!
KS N221

N2 D 1
2

p

a~a2N221!

N~a221!

3PS 12a2,
p

2
,
N221

N2 D 2
N

2
2

1

2Gkr

1
1

6
1••• if N.1. ~31b!

In order to perform the integrations leading to Eqs.~29!–
~31!, it has been necessary to separate the particular caa
51 ~TM polarization! from the general oneaÞ1. It should
be noted that the casea51/N2 ~TE polarization! is included
in the general caseaÞ1 and can be recovered from Eq.~31!.
Moreover, it is important to keep in mind that as far as t
elliptic integralsE, K, andP are concerned, we adhere to th
definitions and conventions of Ref.@22# which are in agree-
ment with those ofMathematica@21# but differ from those of
Ref. @27#.

The various terms appearing in Eqs.~29!–~31! have their
usual physical interpretations: The first and the second te
~in k2) yield the area contributions, the third and the fou
ones~in k) yield the perimeter contributions, while the fift
term ~in k0) yields the curvature contributions. In particula
it should be noted that the fourth term, in all these equatio
provides the perimeter correction associated with the circ
ray-splitting boundary atr5r and that it is this term which
contains the elliptic integrals. Moreover, it seems to us n
essary to point out that the fifth term is associated with
curvature of the circular Dirichlet boundary atr5R. In other
words, and this is rather surprising, the ray-splitting bou
ary atr5r does not provide any correction to the curvatu
contributions.

IV. THE DESYMMETRIZED ANNULAR
RAY-SPLITTING BILLIARD

In Sec. II, we pointed out the twofold degeneracy of t
eigenvalueskm,n with mÞ0. It is possible to work with the
nondegenerated spectra by separating the eigenfunction
the annular ray-splitting billiard in two different sets: In th
first set, we consider the even eigenfunctions@even in the
changex(r,u)→sx(r,2u)] given by
04620
e

s

s,
ar

-
e

-

of

Fm,n
(1)~r,u!5Am,n

(1)S Jm~km,nr!2
Jm~km,nR!

H (1)~km,nR!
H (1)~km,nr!D

3cos~mu! ~32!

with mPN, while in the second set, we consider the o
eigenfunctions @odd in the changex(r,u)→sx(r,2u)]
given by

Fm,n
(2)~r,u!5Am,n

(2)S Jm~km,nr!2
Jm~km,nR!

H (1)~km,nR!
H (1)~km,nr!D

3sin~mu! ~33!

with mPN* . Here and in the following, the superscripts~1!
and ~2! refer respectively to positive and negative pariti
and theAm,n

(1) and theAm,n
(2) are normalization constants. Th

spectral counting functionsN (1)(k) andN (2)(k) associated
with these two sets are then given by

N (1)~k!5 (
m50

1`

(
n51

1`

Q~k2km,n!, ~34a!

N (2)~k!5 (
m51

1`

(
n51

1`

Q~k2km,n!. ~34b!

The smoothed spectral counting functionsN̄ (1)(k) and
N̄(2)(k) respectively associated withN (1)(k) andN (2)(k)
can now be obtained by using,mutatis mutandis, the theoret-
ical framework developed in the two preceding sectio
N̄(1)(k) can be constructed from the even partg(1)(s) of the
regularized resolventg(s) given by Eq.~9! while N̄ (2)(k)
can be constructed from its odd partg(2)(s). The functions
g(1)(s) andg(2)(s) are given by

g(6)~s!5
1

2E0

r E
0

2p

@GII~x,x,s!6GII~x,sx,s!

2G0
II~x,x,s!#rdrdu

1
1

2Er

RE
0

2p

@GI~x,x,s!6GI~x,sx,s!

2G0
I ~x,x,s!#rdrdu ~35!

and they satisfy

g~s!5g(1)~s!1g(2)~s!. ~36!

By performing the integrations in Eq.~35!, we obtain

g(6)~s!5
1

2
g~s!6gcorr~s! ~37!

with
4-6
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gcorr~s!52
1

4
f 0~s!1

N2r 2

4
@ I 0~Nsr!K0~Nsr!

2I 08~Nsr!K08~Nsr!#1
R2

4
@ I 0~sR!K0~sR!

2I 08~sR!K08~sR!#2
r 2

4
@ I 0~sr!K0~sr!

2I 08~sr!K08~sr!# ~38!

and, by using the asymptotic expansions given by E
~9.7.1!–~9.7.6! of Ref. @22#, we can write

gcorr~s!5
~N21!r 1R

4s
2

1

8s2
1Ousu→1`S 1

s3D . ~39!

We then immediately obtain

N̄ (6)~k!5
1

2
N̄~k!6

~N21!r 1R

2p
k7

1

8
1••• ~40!

with N̄(k) which is given by any of Eqs.~29!–~31!, accord-
ing to the physical problem considered.

Now, we would like to provide a physical interpretation
the results obtained above. We first note that the twof
degeneracy of the eigenvalueskm,n with mÞ0 is directly
linked to the invariance of the annular billiard under t
continuous groupO(2) ~i.e., under rotations about the com
mon center of the two circles defining the billiard! and is
mathematically explained by the following result: The fun
tions exp(6imu), with mPN* fixed, form a basis for a two-
dimensional representation ofO(2). In order to suppress tha
degeneracy, it is necessary to break the symmetry unde
continuous groupO(2). This can be done by folding th
annular billiard along its diameter lying on theOx axis. On
that diameter, we can assume that the scalar fieldF satisfies
either the Dirichlet or the Neumann boundary condition. W
then define two different half-annular billiards which a
both desymmetrized versions of the annular ray-splitting
liard. By assuming that the modes which solve the probl
defined by Eqs.~2!–~5! satisfy also the Neumann~the Di-
richlet! boundary condition on the diameter, we recover
even eigenfunctions~32! @respectively the odd eigenfunc
tions ~33!# as well as the associated eigenvalue spectr
Equation~40! provides the Weyl formulas corresponding
these half-annular ray-splitting billiards. The factor 1/2
front of the first term of Eq.~40! as well as the second an
third terms are corrections which take into account the fo
ing of the annular billiard and the boundary conditions on
fold. It is interesting to note~i! the perimeter contribution
given by 6(Nr/2p)k that corresponds to the inner hal
circle diameter, which bounds the region of indexN by a
Neumann or a Dirichlet boundary,~ii ! the term61/8 which
originates from the two corners at the ends of the outer h
circle diameter, and~iii ! the fact that the ray-splitting corner
at the ends of the inner half-circle diameter do not prov
any corrections.
04620
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V. NUMERICAL CHECKS

We have checked Eqs.~29!–~31! and ~40! for various
configurations corresponding to different values of the
rametersr /R, N, and a by considering the oscillations
around zero of the functionDN̄(k)5N(k)2N̄(k) which is
the fluctuating part of the spectral counting function. A
these numerical checks confirm the Weyl formulas obtain
in Secs. III and IV.

In Figs. 1 and 2, we present some results for the TM a
TE theories which have been obtained forr /R52/10 and for
N53/4 andN53. We have computed all the eigenvalu
km,n up to the frequencykmax5120 by solving Eq.~6!. For
N53, the corresponding number of eigenvalues is arou
4700 while forN53/4 it is around 3500.

VI. CONCLUSION AND PERSPECTIVES

~a! From our previous results obtained in the particu
case of annular ray-splitting billiards, we can infer rules p
mitting us to construct Weyl formulas for general ra
splitting billiards. The associated Weyl formulas providin
the smoothed spectral counting functions are given in
usual form, i.e., by

N̄~k!'
A
4p

k21
L

4p
k1C, ~41!

but now the area termA, the perimeter termL as well as the
constant termC must take into account the ray-splitting ph
nomenon.

~i! A is the billiard total area weighted by the refractio
index. For example, a piece of billiard of areaa and index of
refractionN provides a contribution toA given by

FIG. 1. The fluctuating part of the spectral counting function
the TM and TE theories (r /R52/10 andN53/4).
4-7
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N2a. ~42!

~ii ! L is a sum of terms associated with the boundaries
which discontinuities in the physical properties occur. T
contribution of a boundary of length, which separates a
region of indexN from a forbidden region is given by

2N, ~43!

if we assume Dirichlet condition on that boundary and by

N, ~44!

if we assume Neumann condition. The contribution of
boundary of length, which separates a region of indexN
from a region of index 1 is given by

F 4

p
E~12N2!2N21G, if N,1, ~45a!

F4N

p
ES N221

N2 D 2N21G, if N.1, ~45b!

for the TM polarization, by

F 4

p

N2

11N2
K~12N2!1

4

p

N4

11N2

3PS 12N4,
p

,12N2D2N21G, if N,1, ~46a!

FIG. 2. The fluctuating part of the spectral counting function
the TM and TE theories (r /R52/10 andN53).
2

04620
n
e

F 4

p

N

11N2
KS N221

N2 D 1
4

p

1

N~11N2!

3PS N421

N4
,
p

2
,
N221

N2 D 2N21G, if N.1, ~46b!

for the TE polarization, and by

F 4

p

a~12N2!

a221
K~12N2!1

4

p

a2N221

a~a221!

3PS a221

a2
,
p

2
,12N2D 2N21G, if N,1,

~47a!

F 4

p

a~12N2!

N~a221!
KS N221

N2 D 1
4

p

a~a2N221!

N~a221!

3PS 12a2,
p

2
,
N221

N2 D 2N21G, if N.1,

~47b!

in the general case (aÞ1).
~iii ! The constant termC takes into account curvature an

corner contributions. As far as the former is concerned, i
given by

1
1

12pEG

ds

R~s!
~48!

for a boundary curveG which separates a region of indexN
from a forbidden region,R(s) denoting the local radius o
curvature alongG. WhenG is a ray-splitting boundary which
separates a region of indexN from a region of index 1 the
associated curvature contribution vanishes. As far as co
contributions are concerned, we simply note that ra
splitting corners with anglep/2 provide a vanishing contri-
bution.

We are just beginning to check the previous formulas
the various desymmetrized versions of ray-splitting Sinai b
liards. We obtain a very good agreement between the th
retical formulas and the numerical data. This reinforces
opinion that they are exact. It would be very interesting
prove them rigorously but we are unable to do so. We h
also tried to link the formulas found for the TM polarizatio
(a51) to the results that Kohler and Blu¨mel @16# have ob-
tained for the scaled states of quantum ray-splitting billiar
We believe that such a link must exist but, unfortunately,
have not established it.

~b! In this paper, we have been exclusively concern
with the smooth part of the spectral counting functionN(k)
for annular ray-splitting billiards. It seems to us possible
treat also the construction of the oscillating part ofN(k) as a
canonical problem. By carefully taking into account Stok

r

4-8
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phenomenon in the context of hyperasymptotics@25,26#, it
might be possible to extract fromg(s) all the periodic orbit
contributions, even though the algebraic calculations
volved are certainly enormous.

~c! Finally, it would be very interesting to extend our ca
culations to the three-dimensional case, having in mind
plications to the domain of quantum optics and more parti
larly to cavity quantum electrodynamics. Indeed, as is w
known, the optical properties~spontaneous emission, stimu
lated emission, etc.! of atoms and molecules embedded in
lo

H.

R

E.

E.

04620
-

p-
-

ll

cavity strongly depend on the density of states of the e
tromagnetic field. Because of that, Weyl formulas for cavit
containing dielectric structures would be certainly welcom
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